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Abstract

The majority of climate change impact assessments focus on potential impacts at the local ⁄
regional scale. Climate change scenarios with a fine spatial resolution are essential components
of these assessments. Scenarios must be designed with the goals of the assessment in mind.
Often the scientists and stakeholders leading, or participating in, impact assessments are unaware
of the challenging and time-consuming nature of climate scenario development. The intent of
this review, presented in two parts, is to strengthen the communication between the developers
and users of climate scenarios and ultimately to improve the utility of climate impact assess-
ments. In Part I, approaches to climate downscaling are grouped into three broad categories –
dynamic downscaling, empirical-dynamic downscaling and disaggregation downscaling methods
– and the fundamental considerations of the different methods are highlighted and explained for
non-climatologists. Part II focuses on the application of climate change scenarios.

Introduction

Scientists from many disciplines and stakeholders with a wide range of backgrounds are
undertaking climate impact assessments in response to awareness of the potential impacts
of climate variability and change on natural and human systems. For the most part, these
assessments target a specific phenomenon, activity or system, and are constrained to lim-
ited geographic areas (Carter et al. 2007). Climate scenarios are the traditional starting
point for a local ⁄ regional climate change impact assessment, particularly those employing
an end-to-end assessment strategy that links the scenarios in a sequential manner to sev-
eral models such as ecological ⁄process models, economic models, decision-making models
and policy frameworks (Figure 1).

Very simply, a climate scenario is a plausible representation of the future climate (Carter
et al. 2001). The terms ‘climate scenario’ and ‘climate change scenario’ are frequently
used interchangeably, although some authors (e.g. Mearns et al. 2001) have argued that
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‘climate change scenario’ be reserved for the difference between a plausible future climate
and a control climate (discussed below). Typically, climate scenarios are derived from
projections of the climate system’s response to varying greenhouse gas emissions or con-
centrations (Baede 2007). These projections are usually obtained from global climate
models (GCMs1). Because GCMs have a spatial resolution of 100–300 km, ‘downscaling’
methods are employed to infer the high spatial and ⁄or temporal resolution needed for
most impact assessments. Climatologists carefully distinguish a climate scenario from a cli-
mate prediction, forecast or outlook. These latter terms refer to estimates of the evolution
of the climate (Baede 2007), and are reserved for relatively short lead times, usually no
more than a few seasons into the future (American Meteorological Society 2000).

The development of local ⁄ regional climate change scenarios can be a ‘bottleneck’ in
the assessment process. The research team and ⁄or stakeholder groups conducting an
assessment may be unaware of the challenging and time-consuming nature of scenario
development or incorrectly assume that standard protocols exist. Consequently, the time
and resources needed for this important phase of the assessment are often underestimated.
Climatologists and others involved in climate scenario development, ourselves included,
are often approached by colleagues from multiple disciplines and or stakeholder groups
asking: What software can we use to develop scenarios? Can you run a few climate
model simulations for us or show us how to run the model? Would you supervise our
graduate students and postdoctoral advisees to develop scenarios? Can we hire your grad-
uate students to quickly and inexpensively develop scenarios? Can we use archived sce-
narios? Our colleagues are usually disappointed to hear that standard protocols and black
box methods do not, and should not exist; that scenario development can be costly, time
consuming and demand substantial computer resources; and that archived scenarios may
not be suitable for their specific purpose.

This dilemma motivated this article. Although a number of excellent reviews of climate
scenario development already exist (e.g. Benestad et al. 2008; Fowler et al. 2007; Giorgi
2006; Giorgi et al. 2001; Hanssen-Bauer et al. 2005; Hewitson and Crane 1996; Maraun
et al. 2010; Mearns et al. 2001; Wilby and Wigley 1997; Xu 1999; Yarnal et al. 2001),
the majority were written primarily for scientists in climatology or related fields. By con-
trast, this article is directed toward scientists outside of climatology, who are proposing,
leading, or participating in local ⁄ regional climate change impact assessments. Our intent is
to address the plea by Fowler and Wilby (2007, 1543) that information on the ‘technical
(and institutional) constraints’ of downscaling be provided to the user community and
their concern that ‘… somewhere along the line there has been a disconnection between
the suppliers and users of regional climate change scenarios for adaptation and resource
planning’. The material presented here builds on earlier guidelines such as those provided
by Mearns et al. (2003) and Wilby et al. (2004).

We highlight and explain fundamental considerations and limitations for the design,
development, application and interpretation of local ⁄ regional climate change scenarios.

Climate 
scenarios

Ecological 
or activity 
model (s)

Economic 
model (s)

Decision 
making, policy 
frameworks

Fig. 1. Schematic of an end-to-end assessment strategy, also referred to as a ‘feed forward approach’, for a local ⁄ -
regional climate change impact assessment. The types of models and the number of ‘links’ will vary for different
assessments. Climate change scenarios serve as a starting point for an end-to-end assessment.
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The topics and issues addressed are drawn from the literature and from our experiences
developing climate change scenarios for several multidisciplinary impact assessments,
including a current project concerning the potential impacts of climate change on special-
ized agriculture (i.e. commercial fruit production) in Michigan (USA) and central and
eastern Europe (Winkler et al. 2010).

Here in Part I, we provide an overview of the methods commonly used to construct
local ⁄ regional climate change scenarios and the advantages and limitations of the different
downscaling approaches. We assume that most readers are unlikely to develop climate
scenarios themselves, but rather will employ scenarios developed by other members of
their assessment team or obtained from an archive. Hence, we focus on those elements of
the scenario development that we think are most important for an informed interpreta-
tion of downscaled climate change scenarios. Part II focuses on the application of climate
change scenarios in assessment studies.

Overview of Downscaling Methods

Traditionally, downscaling approaches have been classified as either ‘dynamic’ or ‘empiri-
cal’, with empirical methods alternatively referred to as ‘statistical’ (e.g. Christensen et al.
2007) or ‘empirical-statistical’ (e.g. Benestad et al. 2008) downscaling. Dynamic down-
scaling involves the use of numerical models, such as global models with variable spatial
resolution, high-resolution global models, or, more commonly, regional climate models
(RCMs) driven by coarse-scale GCM output, to simulate climate fields with a relatively
fine spatial resolution, whereas empirical downscaling encompasses a large variety of sta-
tistical approaches to deriving fine-resolution climate scenarios. In this review, we instead
use a three category classification, namely dynamic downscaling, empirical-dynamic
downscaling and disaggregation approaches to downscaling. We believe that this classifi-
cation scheme better captures the diversity of downscaling methods that previously have
been broadly grouped together as empirical downscaling and better conveys the nuances
between different empirical downscaling methods. By ‘empirical-dynamic’ downscaling,
we refer to downscaling approaches that empirically relate local or regional surface cli-
mate variables to large-scale airflow and other atmospheric state variables chosen to repre-
sent relevant dynamic and physical atmospheric processes. By contrast, disaggregation
downscaling methods focus on the interpolation of a climate variable from a coarse-reso-
lution field to either a fine-resolution grid or to a specific location, or the inference of a
finer (e.g. daily) time resolution from temporal (e.g. monthly, seasonal) averages or accu-
mulations of a climate variable.

To help visualize the different downscaling approaches, a schematic of the outputs
when the methods are applied to GCM simulations is shown in Figure 2.

Dynamic Downscaling

Most dynamic downscaling employs RCMs, also referred to as limited-area models. RCMs
are driven by lateral boundary conditions obtained from reanalysis fields (a combination of
model output and observations, see Part II for more information) or coarse-scale simula-
tions from GCMs. ‘Lateral’ simply refers to the borders of the RCM domain. Lateral
boundary conditions include horizontal wind, temperature, moisture and pressure fields at
multiple layers in the atmosphere and surface conditions such as soil moisture or sea-surface
temperatures (Giorgi 2006; Rummukainen 2010). RCMs are often described as ‘nested’
within the global-scale observations or GCMs that provide the lateral boundary conditions,
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although for the most part only one-way nesting has been employed. As described by Gi-
orgi (2006), in one-way nesting the large-scale fields drive the RCM but the regional-scale
simulation does not feed back to the larger scale. Therefore, the primary role of the RCM
is to provide regional-scale detail in response to the large-scale forcing.

ADVANTAGES AND LIMITATIONS OF DYNAMIC DOWNSCALING

Dynamic downscaling is the preferred choice for scenario development when the local ⁄
regional climate is strongly influenced by mesoscale (a few to several hundred kilometers)
features, such as topography-induced circulation or sea breeze fronts, whose strength
and ⁄ or location may change in a perturbed climate. In this situation, there should be
‘clearly defined regional-scale (mesoscale) phenomena targeted for simulation’ (CCSP
2008, 34), and it is essential to evaluate whether the RCM adequately simulates these
phenomena. Also, RCMs are often a better choice when an assessment requires a large
suite of physically consistent climate variables (Hanssen-Bauer et al. 2005), for example
when temperature, humidity, wind and radiation fields are necessary to calculate evapo-
transpiration and other relevant parameters for a water budget analysis. Another advantage
of RCMs is that they can potentially capture regional-scale feedback effects such as the
impact of a decrease in snow cover on regional air temperature. However, dynamic
downscaling is demanding in terms of time and resources. For example, the ratio of com-
puter processing time to simulation length is currently approximately 1:100 for a RCM
with 25–50 km resolution and a domain size approximating that of the USA, assuming a
16 processor computer cluster is used for the simulation. Fortunately, archives of RCM
simulations are increasingly becoming available for various regions of the world. How-
ever, the typical (25–50 km) resolution of the RCM simulations in current archives may
be insufficient for some specific assessments or research questions.

Local climate 
change scenarios

Regional climate 
change scenarios

Dynamical Empirical-dynamical Disaggregation Output

GCM resolution

(e.g. 2.5 x 2.5 degrees)

RCM resolution 
(e.g. 50 x 50 km)

Fine resolution 
(e.g. 1 x 1 km)

Station

Fig. 2. Schematic of the outputs of dynamic downscaling, empirical-dynamic downscaling and disaggregation
downscaling methods when applied to GCM simulations. The products from the downscaling can be gridded fields
of climate variables at a range of spatial scales or climate scenarios for specific locations. Different approaches to
downscaling can be applied, as shown by the colored arrows. Also, multiple downscaling steps can be used to
obtain the desired spatial resolution (RCM, regional climate model; GCM, global climate model).

278 Climate scenario development and applications I

ª 2011 The Authors Geography Compass 5/6 (2011): 275–300, 10.1111/j.1749-8198.2011.00425.x
Geography Compass ª 2011 Blackwell Publishing Ltd



DESIGNING RCM SIMULATIONS

Important considerations when designing a RCM simulation include choice of RCM(s),
spatial resolution and simulation length, domain size and placement of the domain
boundaries, spin-up, physical parameterization, large-scale forcing and evaluation.

Choice of RCM
Numerous RCMs exist; among the most commonly used are CHRM (Lüthi et al.
1996), CRCM (Caya and Laprise 1999), HadRM3H (Buonomo et al. 2007), HIRHAM
(Christensen and van Meijgaard 1992), MM5 (Anthes and Warner 1978; Grell et al.
1994), RAMS (Pielke et al. 1992), RegCM (Giorgi and Bates 1989), REMO (Jacob and
Podzun 1997) and WRF (Skamarock et al. 2005). Although these models were all con-
structed from fundamental conservation laws and numerically solve a similar set of
dynamic equations, they differ in a variety of ways including grid structure, numerical
schemes, surface boundary conditions and the parameterizations required to account for
subgrid-scale physical processes. Comparisons of different models suggest that no single
RCM is ‘best’ with ‘different models showing superior performance depending on the
field examined’ (CCSP 2008, 35). Furthermore, recent model comparisons found that
the uncertainty introduced by the choice of RCM can be as large as that introduced by
the choice of GCM used to drive the RCM simulation (e.g. Déqué et al. 2007). As
pointed out by Giorgi (2006, 110), this indicates that ‘internal [RCM] physics can be
dominant over the lateral boundary forcing for some climate variables’.

Spatial resolution and simulation length
Typical horizontal resolutions of RCMs are on the order of 25–50 km (Rummukainen
2010), although simulations with resolutions of only a few kilometers are possible using
multiple-nested RCMs (e.g. Hay et al. 2006; Liang et al. 2001). One constraint is that
the RCM performance deteriorates if the resolution of the RCM is more than 8–12
times finer than the resolution of the driving lateral boundary conditions whether from
reanalysis fields, GCMs, or a coarser-scale RCM (CCSP 2008; Giorgi 2006). RCM sim-
ulations typically contain 18–40 vertical layers from the surface of the earth to the lower
to mid stratosphere (15–25 km).

Spatial resolution and simulation length are intrinsically linked. As the spatial resolution
increases, the time step of a model simulation is shorter and the required computational
resources increase (Giorgi and Mearns 1999). Thus, while the length of GCM simulations
is typically a century or longer, RCM simulations are usually only a few years or several
decades in length (e.g. Christensen et al. 2002; Leung et al. 2004; Plummer et al. 2006).
A common practice is to perform RCM simulations for two or three relatively short
(10–30 years) ‘time slices’ that are separated by several decades (e.g. Laprise 2008; Leung
et al. 2004). The implicit assumption is that conditions for neighboring time periods can
be interpolated from the time slices. This assumption is questionable as considerable inter-
decadal variability is evident in the GCM simulations used to drive RCMs (e.g. Guent-
chev et al. 2009).

Model domain, spin-up and parameterization
Typically, the model domain for a RCM covers a portion of a continent (CCSP 2008),
but the domain size depends on the goals of the assessment. The domain should be suf-
ficiently large to capture the relevant mesoscale circulations (Mearns et al. 2003), but
too large of a domain may cause the larger-scale circulation to drift away from that of
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the driving GCM (Jones et al. 1995). Also, computational costs increase with larger
domain sizes (Leduc and Laprise 2009). Domain boundaries should be placed so that the
area for which the scenarios are required is located well into the interior of the domain
(Mearns et al. 2003), and so that the boundaries do not intersect areas of sharp gradients
of topography or surface conditions (CCSP 2008; Giorgi 2006; Giorgi and Mearns
1999).

Model simulations also require time for the large-scale forcings to be felt, or what is
known as ‘spin-up’ (American Meteorological Society 2000). Definitive guidelines for the
spin-up period do not exist. In general, land-surface processes (e.g. soil temperature, soil
moisture) require longer spin-up periods than atmospheric fields (CCSP 2008; Laprise
2008).

Another important consideration is the choice of model parameterizations. Some pro-
cesses either occur at scales finer than the RCM resolution or are too complex to be real-
istically represented within the model (Laprise 2008). These processes are instead
‘parameterized’, or in other words they are represented in terms of resolved variables
and ⁄ or simplified parameters. For instance, parameterizations are needed to represent the
formation of convective clouds in a RCM with a 25–50 km resolution. Even when a
multiple-nested RCM simulation is used to obtain a finer (e.g. 7–10 km) grid size that
approximates the resolution of convective clouds, parameterization is still needed to cap-
ture microphysical processes. A variety of parameterization schemes exist, and different
schemes may perform better for some regions than others (CCSP 2008). A limitation is
that the parameterizations are often derived statistically for the current climate and may
not be appropriate for future climates (Christensen et al. 2007). As pointed out by
Maraun et al. (2010, 24), non-stationarity of RCM parameterizations is a particular
concern for RCMs developed for specific regions, and ‘there is greater confidence in the
parameterization schemes in future climates’ if a RCM performs well in multiple regions
with diverse climates.

‘Current’ and ‘control’ climate simulations
Before simulations can be performed for a future period, it is essential that RCM simula-
tions be conducted for a recent climate period. In our experience, non-climatologists are
often not aware that this is a multiple-step process (Figure 3). Initially, in what is often
referred to as the ‘perfect boundary condition’ simulation (Giorgi 2006), the RCM is dri-
ven either by observations or reanalysis fields for a recent period (e.g. 1991–2000),
referred to in Figure 2 as the ‘current’ climate. The RCM output is then compared to
relevant observed series or fields to identify systematic errors of the model. Special atten-
tion should be paid to whether the RCM adequately simulates the mesoscale features and
processes that influence the climate variables of interest for the assessment. At this junc-
ture changes to the RCM, such as modifications to the parameterizations or adjustments
of the model domain, may be warranted.

Because RCMs ‘inherit’ the errors of the driving GCM (Giorgi and Mearns 1999), it
is essential to also perform a ‘control’ run (Mearns et al. 2003). For this run, the RCM is
driven by GCM-simulated fields for the same time period used for the perfect boundary
condition simulation; differences in the climate statistics between the two simulations are
assumed to result from error in the driving GCM fields (e.g. Pan et al. 2001). RCM sim-
ulations for future periods should always be compared to the control simulation rather
than the perfect boundary condition simulation, as the control run captures the error
from both the GCM and RCM whereas the perfect boundary condition simulation cap-
tures only the RCM error.
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Empirical-Dynamic Downscaling

Although the term ‘empirical-dynamic’, or alternatively ‘statistical-dynamic’, has been
used before (e.g. Najac et al. 2011), this terminology traditionally has referred to those
downscaling methods that used circulation ⁄ airflow patterns to estimate local or regional
surface climate variables. Here, we use the term more broadly to refer to all empirical
methods that use patterns or point values of circulation and ⁄or free atmosphere variables
that were selected to represent important atmospheric processes. Free atmosphere vari-
ables, such as 500 hPa geopotential height, are minimally influenced by surface pro-
cesses and friction. By contrast, surface climate variables (e.g. surface temperature) are
strongly influenced by boundary fluxes that may not be adequately parameterized in a
GCM.

Empirical-dynamic downscaling is frequently used when climate scenarios for individ-
ual locations are required and ⁄or the climate variables needed for the assessment are
poorly simulated by RCMs. Also, because these methods generally are not as resource
intensive as dynamic downscaling, it is somewhat easier to build a larger ensemble (i.e.
suite) of scenarios and include multiple future time slices. For empirical-dynamic down-
scaling it is assumed that (i) GCMs better simulate circulation and free atmosphere vari-
ables compared to surface climate variables; (ii) circulation and free atmosphere variables
are representative of a larger spatial domain compared to surface climate variables; (iii)
empirical relationships can implicitly capture the effects of local topography, geography
and boundary conditions on the surface variables; and (iv) the relationships observed for
the current climate are stationary in time (Winkler et al. 1997). Downscaled scenarios are
typically developed for each climate variable (e.g. temperature, precipitation) separately,
which may result in less consistency between variables as compared to scenarios obtained
from dynamic downscaling.

“Observed” climate 
Observations from 

climate stations and/or 
reanalysis fields

“Future” climate 
GCM simulations for         

a future period are used   
as lateral boundary 
conditions for RCM 

simulation

“Control” climate 
GCM simulations for         

a recent period are used 
as lateral boundary 
conditions for RCM 

simulation

“Current” climate 
Observations and/or 

reanalysis fields are used 
as lateral boundary 
conditions for RCM 

simulation
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insight on RCM 

errors and biases

Difference or delta   
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potential future changes

Comparison provides 
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on RCM simulation 

Fig. 3. Definition of ‘observed’, ‘current’, ‘control’ and ‘future’ climates for RCM simulations and the types of com-
parisons that must be performed. Note that it is not appropriate to compare future climate projections directly to
observations (RCM, regional climate model; GCM, global climate model).
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ANALOGS

The simplest empirical-dynamic downscaling approach is analogs, also referred to as
weather typing schemes. Observations of local climate variables are related to the occur-
rence of different daily weather circulation patterns. The weather types can be identified
either manually or objectively using a variety of statistical techniques. Changes in the fre-
quency of the weather types in a perturbed climate are then used to project changes in the
local climate variables (e.g. Matulla et al. 2008; Zorita and von Storch 1999). Important
assumptions are that the frequency, timing and persistence, but not the character, of the
weather patterns will change in the future (Hewitson and Crane 2006); the relationship
between the weather types and local climate remains stationary; and future values of the
climate variable will be within the range of observed values (Hanssen-Bauer et al. 2005).

EMPIRICAL TRANSFER FUNCTIONS

A more complex approach to empirical-dynamic downscaling is the development of
empirical transfer functions that relate large-scale values or patterns of one or more pre-
dictor variables to local values of the predictand. Most transfer functions are developed
using what in short-range weather forecasting is referred to as the ‘perfect prog’ approach
(Glahn 1985) in that empirical relationships are first developed from observations of both
the predictor variables and the predictand(s) and then applied to output from weather
and ⁄ or climate model simulations.2 Key considerations when developing empirical trans-
fer functions are temporal resolution and stratification, choice of predictand, potential
predictors, definition of calibration and validation periods, and statistical method used to
define the function.

Temporal resolution and stratification
Historically, the majority of empirical transfer functions related monthly, seasonal, or
annual values of the predictors to values of the predictands with the same temporal
resolution. This emphasis on a coarse temporal resolution, rather than daily or
sub-daily values, is in part an artifact of the temporal resolution of popular data
archives. A major source of GCM simulations for the user community is the IPCC
Data Distribution Centre (http://www.ipcc-data.org/), and until recently only monthly
averages were available for many of the variables often used as predictors and ⁄or pre-
dictands. Although daily and sub-daily values could be obtained by contacting model-
ing centers directly, this required considerable effort to transfer large data volumes and
preprocess the variety of data formats, some of which are unique to the atmospheric
sciences. Also contributing to the focus on coarse temporal resolution is the generally
higher explained variances obtained for transfer functions with monthly rather than
daily resolutions (Yarnal et al. 2001). Empirical-dynamic downscaling efforts are now
moving to a daily or finer time step (e.g. Winkler et al. forthcoming), as this temporal
resolution is often needed to portray the weather–climate dependency of a phenome-
non or system.

Temporal stratification also needs to be considered, as it is possible to develop a single
empirical transfer function or separate functions by month or season. The former
approach minimizes the risk of unanticipated changes in the timing of seasons in a future
climate (Winkler et al. 1997; Yarnal et al. 2001) or that conventional seasonal definitions
may not reflect ‘natural’ seasons (Wilby et al. 2004), but ignores seasonal variations in the
processes responsible for the predictand (Wetterhall et al. 2005).
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Predictand(s)
The two most widely used predictands are surface3 temperature and precipitation, but
empirical transfer functions can be developed for a range of predictands including vari-
ables not directly available from GCMs such as phenological stages (e.g. Matulla et al.
2003). One factor to consider when choosing the predictand is whether a simpler variable
that is hopefully easier to simulate can be substituted for a more complex variable that is
challenging to simulate. For example, the explained variance of transfer functions simulating
daily precipitation is notoriously low (e.g. Buishand et al. 2004), but for some applica-
tions, such as estimating the potential impacts of climate change on outdoor recreation, it
may be possible to substitute the occurrence of a wet day (a nominal ⁄ ordinal variable) for
precipitation amount (an interval ⁄ ratio variable).

Predictor variables
The choice of predictor variables is a crucial consideration. As stated by Hanssen-Bauer
et al. (2005, 264), ‘unwise choices of predictors … may lead to dubious results’. The
variables selected as large-scale predictors should be well simulated by climate models,
capture the climate change ‘signal’, account for a large portion of the variability in the
predictand, and have a stable relationship with the predictand (Giorgi et al. 2001; Wilby
et al. 2004). Even with these guidelines in mind, numerous ‘user decisions’ (Winkler
et al. 1997) surround the choice of predictor variables.

One issue is whether to express the predictor variables in terms of point values
obtained either from the nearest GCM grid point or interpolated from surrounding grid
points or to express them as large-scale atmospheric flow patterns. The latter class of pre-
dictors is usually obtained by applying principal component4 (e.g. Benestad 2001; Kaas
and Frich 1995), fuzzy rule (Bardossy et al. 1995; Panagoulia et al. 2006), or self-organiz-
ing map (Hewitson and Crane 2006) analyses to circulation fields such as sea-level pres-
sure, although simple circulation indices (e.g. Conway and Jones 1998; Katz and Parlange
1993) or gradients (e.g. Wetterhall et al. 2005) can also be used. An argument for using
circulation fields as predictors is that GCMs are thought to more accurately portray the
large-scale field of a variable rather than the values at one or a few grid points. A disad-
vantage is that the domain over which the circulation fields are identified may impact the
downscaled scenarios (Benestad 2001; Goodess and Palutikof 1998). The influence of the
domain size appears to vary with season and location with the largest effect on the down-
scaled scenarios when circulation is weak (Benestad 2001), such as during the warm sea-
son or at low latitude locations. When selecting the domain size, scenario developers
must carefully consider the varying scales of the circulation features important for their
location, and recognize that some experimentation is needed to indentify, as suggested by
Benestad (2001, 1665) ‘the largest size in the range that roughly gives the same answer’.

Murphy (2000) was one of the first authors to raise the issue of whether a climate
change signal is present in the predictor variables. He found that, when downscaling
monthly precipitation, transfer functions based only on circulation variables performed as
well for the present climate as those that also included humidity. But when the transfer
functions were applied to GCM simulations for future periods, the projected precipitation
was substantially different. This occurred because the projected changes in the circulation
predictors were much smaller than the changes in the humidity variables. Humidity in
this case is a climate change ‘signal bearing predictor’ (Hanssen-Bauer et al. 2005, 258).

Careful selection of predictor variables can also help minimize concerns about the
stationarity of the relationship between the predictors and predictand(s) (Hewitson and
Crane 2006). Predictors should be chosen to mimic as close as possible important, time-
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invariant physical processes. For example, the thickness (distance) between the 1000- and
500-hPa-pressure surfaces is often used as a predictor variable when downscaling tempera-
ture, as the well-known hypsometric relationship states that the mean temperature of a
layer is proportional to the layer thickness. Similarly, vorticity (or spin) is frequently
included in downscaling functions for precipitation as vorticity changes are physically
related to rising motion.

When the predictor variables have a strong annual cycle, the relationship between the
predictors and predictands will be inflated. In this situation, the transfer functions are in
essence simulating the annual cycle rather than the day-to-day or month-to-month
(depending on the temporal resolution) deviations of the predictand. Some, but not all,
authors have removed the annual cycle before fitting the transfer function (e.g. Huth and
Kysely 2000; Menzel and Burger 2002; Winkler et al. forthcoming).

Calibration, validation and control periods
The time period used for the development of empirical transfer functions is referred to
as the calibration period or, alternatively, the development period. The transfer func-
tions are then evaluated against observational data outside of the calibration period, or
what is often referred to as the validation period. The choice of calibration and valida-
tion periods can impact the stationarity of the functions. If trends are apparent in the
calibration period, the transfer functions are unlikely to be stationary with time. Also,
greater confidence can be placed in the time invariance of the functions if the calibra-
tion and validation periods are well separated in time (Wilby et al. 2004). As for
dynamic downscaling, a control period is an essential component of the scenario
development. The empirical transfer functions are applied to GCM-simulated values of
the predictor variables for a similar time period as the calibration and ⁄or validation peri-
ods. Differences in the climate statistics represent uncertainty introduced by error and
bias in the GCM fields. Alternatively, the empirical-dynamical transfer functions can be
applied to output from RCMs driven by a GCM (e.g. Themebl et al. forthcoming). In
this case, differences in the climate statistics represent the combined uncertainty intro-
duced by the GCM and RCM.

Methods for defining transfer functions
Numerous statistical methods are used to develop transfer functions including, but not
limited to, multiple or stepwise regression (e.g. Easterling 1999; Reichert et al. 1999) and
other regression techniques such as multi-way partial least squares regression (Bergant and
Kaijfež-Bogataj 2005), tree-structured regression (Li and Sailor 2000) and logistic regres-
sion (e.g. Beckmann and Buishand 2002); generalized linear models (e.g. Fealy and Swee-
ney 2007); canonical correlation analysis (e.g. Busuioc et al. 2001; Karl et al. 1990; von
Storch et al. 1993); artificial neural networks (e.g. Haylock et al. 2006; Tolika et al.
2007); singular value decomposition (Huth 1999; Widmann et al. 2003); hidden Markov
models (Cheng and Tan 2008) and support vector machine algorithms (Tripathi et al.
2006).

Comparisons exist of many of the commonly used methods to develop transfer func-
tions (e.g. Khan et al. 2006; Schoof and Pryor 2001), but any synthesis is complicated by
the different locations, predictors and predictands of these studies. In a review of down-
scaling methods used in hydrology, Fowler et al. (2007) concluded that choice of statisti-
cal method generally introduces less uncertainty than the choice of GCM to which the
transfer functions are applied. In addition, they found that the choice of predictor vari-
ables appears to be as important as the choice of statistical method. Other authors also
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concluded that, at least for linear methods, different techniques perform similarly as long
as the ‘information content in the predictors is similar’ (Hanssen-Bauer et al. 2005, 260).

Limitations of empirical-dynamic downscaling
One concern of empirical-dynamic downscaling is that, because the explained variance is
always <100%, the variance of the predictand is underpredicted and consequently
extremes are underestimated (Easterling 1999; Fowler et al. 2007; Karl et al. 1990). Vari-
ous methods for adjusting or ‘inflating’ the variance, such as adding white noise to the
simulated time series, have been attempted, but all make assumptions regarding variability
in a future climate that are not necessarily defendable. Also, even though the transfer
functions may validate well for the present climate, they are not necessarily valid for a
perturbed climate (Wilby et al. 2004). One reason is that all empirical-dynamic downscal-
ing methods assume that anticipated future changes lie within the range of the natural
variability of the predictand. Large changes in the future invalidate this assumption. Yet
another limitation is that with a few exceptions (e.g. Karl et al. 1990) transfer functions
are developed for each predictand separately. Also, transfer functions must be developed
individually for each location, as it is the local conditions that are implicitly captured by
the transfer functions.

Disaggregation Methods

In contrast to empirical-dynamic downscaling, disaggregation downscaling methods start
with coarse-scale fields of a climate variable and infer higher spatial and ⁄or temporal reso-
lution for that variable. In general, disaggregation methods require fewer resources than
either dynamic or empirical-dynamic downscaling. This, along with the availability of
archived scenarios, has contributed to the popularity of disaggregation methods for cli-
mate impact assessments.

SPATIAL DISAGGREGATION

One approach to spatial disaggregation is to employ statistical methods (often general
linear models such as regression) to relate the coarse-scale values (i.e. the predictors) of
a variable to the value at an individual location (e.g. Salathé et al. 2007). Using surface
temperature as an example, one might average temperature observations over a region
approximating the size of a GCM grid cell and then statistically relate the spatial average
to the temperature at an observing station. The derived relationship can then be applied
to coarse-scale GCM-projected fields of temperature for control and future periods to
obtain station-specific projections. This approach is most often used when the focus is
on annual, seasonal, or monthly means and accumulations rather than on daily values.
Similar to empirical-dynamic downscaling, it is assumed that the effects of local
topography, geography and boundary conditions are implicitly captured in the statistical
relationship. Evaluation of the GCM simulations of the coarse-scale values is particularly
important for this downscaling approach, as substantial errors have been documented in
GCM projections of surface temperature and precipitation (e.g. Palutikof et al. 1997). In
some cases, in order to account for biases in GCM simulations, the statistical relation-
ships are developed between the coarse-scale fields and the parameters of the probability
density function of the local climate variable, and then a random number generator is
used to obtain a daily time series for the location (e.g. Notaro et al. forthcoming). A
related approach is to include, besides the coarse-scale values of the predictand, addi-
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tional predictors such as free atmosphere variables to refine the relationship between the
large-scale predictor and the local-scale predictand (e.g. Schmidli et al. 2006; Tolika
et al. 2007). This latter approach is similar to empirical-dynamic downscaling, but we
classify it as a disaggregation downscaling method because the coarse-scale value of the
predictand usually is the largest contributor to the explained variance (e.g. Themebl
et al. forthcoming).

A more common approach to spatial disaggregation is to spatially interpolate coarse-
scale GCM output to a finer resolution grid. For surface temperature and other variables
that are not zero bounded, a spatial interpolation scheme is often applied to the differ-
ences at the GCM grid points between the simulated values for a future climate and those
for the control climate, to account (at least partially) for biases in the GCM simulation.
In the case of precipitation, which is a zero-bounded variable, the ratio of the projected
future change compared to the modeled value for the control climate at the individual
GCM grid points is used. Common spatial resolutions of the resulting downscaled climate
variables are 0.5� · 0.5� (e.g. Mitchell et al. 2004), 0.1� · 0.1� (e.g. Notaro et al. forth-
coming) and 10¢ · 10¢ (e.g. Tabor and Williams 2010). The spatial interpolation schemes
vary from those based on distance only (e.g. Tabor and Williams 2010) to more complex
schemes such as thin plate spline interpolation (e.g. WorldClim future projections;
http://www.worldclim.org/futdown.htm) that uses elevation (obtained from a digital ele-
vation model) in addition to latitude and longitude to capture the influence of fine-scale
topography on the temperature and precipitation fields. As pointed out by Daly (2006,
707), a major consideration when using these fine-resolution scenarios is that interpolated
high-resolution datasets ‘raise important questions about the tendency to equate resolution
with realism’.

TEMPORAL DISAGGREGATION

Because of their smaller size, datasets of monthly aggregated projections from GCMs are
much easier to manage than the voluminous data sets of daily or sub-daily projections.
Resource constraints (storage space, computer expertise, time) often prohibit the use of
the daily or sub-daily GCM projections, even for impact assessments that require fine
time steps. In these situations, stochastic weather generators are often employed to dis-
aggregate monthly precipitation totals or temperature means into daily time series
(Wilby et al. 2004) that are consistent with the GCM-projected changes (e.g. Dubrov-
sky et al. 2004; Katz 1996; Qian et al. 2008; Semenov 2008; Semenov and Barrow
1997; Wilks 1992). Typically, weather generators use Markov processes to simulate
wet ⁄dry days and then estimate wet day amounts, temperature and solar radiation condi-
tional on precipitation occurrence (Wilby et al. 2004; Wilks 2010). They are usually
adapted to climate change studies by modifying the weather generator parameters, pri-
marily the monthly mean and standard deviation, by GCM-projected changes in these
parameters, although alternative methods such as using GCM-simulated daily circulation
variables to estimate future probabilities of precipitation occurrence have been proposed
(Wilks 2010). The majority of applications have used weather generators designed to
provide synthetic series of climate variables at a single site, although several multistation
variants have been proposed to capture the spatial coherence of the climate variables
(see Maraun et al. 2010 for a review). A limitation of weather generators is that the
simulated interannual variability of the synthetic series is smaller than the observed vari-
ability (what is known as the ‘overdispersion’ phenomenon) (Qian et al. 2008). Also,
future changes in the variable, such as precipitation occurrence, used to condition a
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weather generator can have unanticipated (and unrealistic) effects on the other variables
(Wilby et al. 2002; Wilks 1992).

Hybrid Downscaling Approaches

A recent development in climate scenario development is the use of more than one
downscaling approach, or what we refer to here as ‘hybrid’ downscaling, to obtain cli-
mate scenarios with the resolution and characteristics required for an assessment. Most
commonly, empirical-dynamical or disaggregation methods are applied to the outputs
from RCMs to obtain scenarios at a local scale and ⁄or to adjust for errors in the RCM
simulations (e.g. Themebl et al. forthcoming). A more elaborate example is provided by
Früh et al. (2011) who employed an urban climate model coupled with temporal interpo-
lation to obtain urban-scale scenarios with a short time step from previously developed
regional-scale climate scenarios. Hybrid downscaling can potentially maximize the advan-
tages and minimize the limitations of different downscaling approaches.

Choosing a Downscaling Method – A Difficult Decision

The choice of downscaling methodology can have a large influence on the outcomes of
an assessment. Scientists and stakeholders involved in a climate impact assessment must
clearly outline at the beginning the desirable (and minimal) requirements for climate
change scenarios. For example, monthly or seasonal means and totals may be sufficient
for some assessments, whereas for others daily or sub-daily values of climate parameters
are required. Or in some cases, a large suite of climate variables is necessary, but for
others one or two variables, often temperature and precipitation, may be sufficient. To
further assist assessment teams in evaluating different downscaling options, we provide in
Table 1 a checklist of important considerations, roughly based on the end-user needs
identified by Maraun et al. (2010) for precipitation scenarios, and relate these to the
strengths and limitations of the downscaling methods described above. When using the
checklist, assessment teams must keep in mind that currently it is not possible to argue
for one approach being universally ‘better’ than another (Christensen et al. 2007).
Rather, the different approaches should be viewed as complementary, and assessment
teams should consider employing multiple downscaling approaches as appropriate. Also,
an assessment team is responsible for interpreting the climate change scenarios in light
of the assumptions and limitations of the scenarios. In Part II, a number of issues that
frequently arise when applying scenarios in climate change impact assessments are
addressed.
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1 Although historically ‘GCM’ is the abbreviation for ‘general circulation model’, more recently the meaning of
this acronym has broadened to also include complex models that couple the atmosphere, ocean and land-surface
components of the earth-atmosphere system, or what are generally known as ‘global climate models’. The broader
meaning is used here.
2 Another frequently used approach in statistical weather forecasting is ‘Model Output Statistics’ (MOS), where
transfer functions are developed using model simulated, rather than observed, values of the predictor variables. The
advantage of MOS over perfect prog is that MOS inherently accounts for model error. Because GCM simulations
are only one possible realization of the climate, it is not possible to relate a GCM-simulated value of a predictor
variable for a particular time to the observed value for the same time. Consequently, MOS approaches cannot be
directly applied to GCM simulations, and perfect prog methods are used instead. However, RCM simulations for
the current climate (i.e. perfect boundary condition simulations) can be related to observed values of the predictand
for a particular time stamp. Recently, MOS has been used to downscale RCM simulations to finer resolution (e.g.
location of a climate observing station) and to adjust for error in the RCM simulations.
3 Observations of maximum and minimum temperature are taken at 2 m above the surface except in the USA
where they are reported at approximately 1.5 m. Sometimes these measurements are referred to as ‘near surface’
measurements, although more commonly they are simply referred to as ‘surface’ measurements.
4 In atmospheric science, principal components are often referred to as empirical orthogonal functions (Wilks
2006).
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